
ORDERABLE GROUPS AND 3-MANIFOLDS MINICOURSE NOTES

ADAM CLAY

Abstract. This course will begin with an introduction to left-orderable and circularly orderable
groups, and will focus on establishing the tools needed to tackle the problem of left-ordering fun-
damental groups of 3-manifolds–such as the Burns-Hale theorem, actions on R and S1, and related
Euler class arguments. With these tools in hand, we’ll move on to investigating some of the excep-
tional behaviour of left-orderability with respect to fundamental groups of 3-manifolds. Our chosen
examples will draw inspiration from the L-space conjecture, with a focus on manifolds arising from
Dehn surgery, and on Seifert fibred spaces. We’ll also encounter several open problems along the
way, some completely algebraic having only to do with orderable groups, and others that are linked
to special cases of the L-space conjecture.

1. Lecture 1: Left-orderings and bi-orderings

Definition 1.1. A left-ordering of a group G is a strict total ordering < of the elements of G such
that

g < h⇒ fg < fh

for all f, g, h ∈ G. A bi-ordering of G is a left-ordering that also satisfies

g < h⇒ gf < hf

for all f, g, h ∈ G.

A group equipped with a specified left order bi-ordering will be called an ordered group and
written as a pair (G,<). A group which admits a left-ordering (resp. bi-ordering) will be called a
left-orderable group (resp. bi-orderable group). We’ll write LO group and BO group for short.

There is an alternative characterisation.

Definition 1.2. A group G is LO if there exists a subset P ⊂ G satisfying

(1) P · P ⊂ P ,
(2) G \ {id} = P ⊔ P−1.

A subset P satisfying these two properties is called a positive cone.

There’s a correspondence between positive cones and orderings on G via

< 7→ {g ∈ G | g > id}
and

P 7→ g < h if and only if g−1h ∈ P.

One can check that this defines a bijection. A group is BO if it admits a P ⊂ G satisfying (1) and
(2) above, and also (3) gPg−1 ⊂ P for all g ∈ G.

Example 1.3. With only the definition in hand, examples are tricky to come by. Obviously Z,Q,R
are all BO groups with equipped with addition. □
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Figure 1. Ordering Z2 using a vector of irrational slope.

Example 1.4. We can order Z2 by choosing (x1, x2) ∈ R2 such that x1/x2 is irrational, and
declaring (m,n) > (0, 0) if and only if mx1 + nx2 > 0 for all (m,n) ∈ Z2. This corresponds to
taking a line of irrational slope passing through the origin, and declaring all elements on one side
of the line to be the positive cone, see Figure 1. This obviously generalizes to Zn, though you you
have to take care to choose a hyperplane that avoids all the integer lattice points in Rn. □

Getting fancier examples than this without having any sophisticated tools in hand requires a bit
of cleverness, so let’s see one such example.

Example 1.5. (Due to Magnus, following [15, Chapter 3]) We show in this example that the free
group F on countably many generators {x1, x2, . . . } is bi-orderable, so all of the finitely generated
free groups are, too. Set

Λ = Z[[X1, X2, . . . ]],

the ring of formal power series in non-commuting variables. Define µ : F → Λ by

µ(xi) = 1 +Xi, and µ(x
−1
i ) = 1−Xi +X2

i −X3
i + . . . .

So, for example

µ(x1x2) = (1 +X1)(1 +X2) = 1 +X1 +X2 +X1X2,

or one can check also that, no matter if p > 0 or p < 0, one always has

µ(xpi ) = 1 + pXi +O(2)

where O(2) is terms of degree two and higher. Then we observe two lemmas that together complete
the proof:
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Lemma 1.6. Let G denote the subgroup of Λ consisting of elements of the form 1 + O(1). Then
G is bi-orderable.

Proof. Write the elements of G with lowest degree terms first, and in each degree, order the terms
lexicographically (in fact, any fixed ordering in each degree will do). Then, if U, V ∈ Λ, declare
U < V if the first coefficients where U, V differ satisfy this same inequality. E.g. if

U = 1 +X1 +X2 + 3X2
1 + . . . and V = 1 +X1 +X2 + 5X2

1 + . . .

then U < V because 3 < 5. From here it is a straightforward check to verify that this works. □

Lemma 1.7. The homomorphism µ : F → Λ is injective.

Proof. One checks that this is true by showing that if w = xn1
i1

· · ·xnk
ik

then the coefficient of the

term Xn1
i1

· · ·Xnk
ik

in the expression for µ(w) is p, in particular, µ(w) ̸= 1. □

We can also create plenty of left-orderable groups using extensions, as this requires little more
than the definition.

Proposition 1.8. Suppose that PK ⊂ K and PH ⊂ H are positive cones (so that K and H are
LO), and that

{id} → K
i→ G

q→ H → {id}
is a short exact sequence. Then PG = i(PK) ∪ q−1(PH) is a positive cone, in particular, G is LO.

Proof. Check the definition. □

Example 1.9. Torsion-free metabelian groups with torsion-free abelianization are left-orderable.
For example, the Heisenberg group over R is the group of matrices

H(F ) =







1 a b
0 1 c
0 0 1


 : a, b, c ∈ R





is left-orderable for this reason. The group

K = ⟨x, y | xyx−1 = y−1⟩
is also left-orderable by the same argument, since there is a short exact sequence

{id} → Z i→ K
q→ Z → {id}.

Note, however, that the two ends of this short exact sequence are BO groups, while the centre is
clearly not BO. □

Proposition 1.10. If PK ⊂ K and PH ⊂ H are positive cones of bi-orderings, and

{id} → K
i→ G

q→ H → {id}
is a short exact sequence, show that PG = i(PK) ∪ q−1(PH) is a positive cone if and only if
gi(PK)g−1 ⊂ i(PK) for all g ∈ G.

Proof. Check the definition. □

We need additional tools to produce more examples of LO and BO groups, aside from these few.
The next theorem characterizes such groups completely. Recall first that a G-action on a set X is
effective if g · x = x for all x ∈ X implies g = id.

Theorem 1.11. A group is left-orderable if and only if it admits an effective action by order-
preserving bijections on a totally ordered set.
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Proof. If G is LO, first fix a left-ordering < of G and then set (X,<) = (G,<). Then G acts on X
by left-multiplication, which is clearly and order-preserving effective action by bijections.

On the other hand, suppose that (X,<) has an effective, order-preserving G-action. Choose a
well-order ≺ of X (completely unrelated to the ordering < of X!) and for every g ∈ G \ {id}, set

xg = min
≺

{x ∈ X | g · x ̸= x}.

Note xg exists because the action is effective. Now, define a positive cone P ⊂ G by g ∈ P if and
only if g · xg > xg.

To check this works, it is straightforward to see that P ⊔ P−1 = G \ {id}. Then, given g, h ∈ P
suppose that xg ≺ xh, the case of xh ≺ xg being similar. Observe that xgh = xg, because h ·xg = xg
and so gh · xg = g · xg ̸= xg; while g · x = x and h · x = x for all x ≺ xg. So we compute that

gh · xgh = gh · xg = g · xg > xg = xgh,

so that gh ∈ P . □

Proposition 1.12. A group G is bi-orderable if and only if it acts effectively by order-preserving
bijections on a totally ordered set (X,<), and further

∀g ∈ G[(∃x s.t. g · x > x) ⇒ (g · x ≥ x for all x ∈ X)].

When G is a countable group, these results can be greatly improved in a way that connections
LO and BO groups to dynamics.

Theorem 1.13. Suppose that G is countable. Then G is LO if and only if there exists an embedding
G→ Homeo+(R).

Proof. The “⇐” direction is already clear from the previous theorem, but “⇒” requires a construc-
tion, see e.g. [27].

First, define a gap in (G,<) to be a pair of elements (g, h) with g < h such that there is no
f ∈ G with g < f < h. Then call an order-preserving embedding t : (G,<) → (R, <) tight if
(a, b) ⊂ R \ t(G) implies that (a, b) ⊂ (t(g), t(h)) for some gap (g, h) in (G,<)–i.e., the only gaps
in the image of t come from gaps in G.

Tight embeddings exist whenever G is countable, for any ordering < of G. To see this, we
enumerate G = {g0 = id, g1, g1, . . . } and set t(id) = 0. Then if t(id), t(g1), . . . , t(gk) are already
defined, we set:

t(gk+1) =





max{t(g0), . . . , t(gk)}+ 1 if gk+1 > max{g0, . . . , gk}
min{t(g0), . . . , t(gk)} − 1 if gk+1 < min{g0, . . . , gk}
t(gj) + t(gi)

2
if gj < gk+1 < gi and

̸ ∃ℓ ∈ {0, . . . , k} s.t. gj < gℓ < gi.

One can verify that this is tight. Then given a tight t : (G,<) → (R, <) we can build ρ : G →
Homeo+(R) via:

(1) If x ∈ t(G) then x = t(h) for some h ∈ G and set ρ(g)(t(h)) = t(gh),

(2) if x ∈ t(G), then define ρ(g)(x) so that ρ(g) is continuous on t(G), e.g. using sequences,

(3) if x ∈ R \ t(G), then there exists a gap h, k such that x ∈ (t(h), t(k)). Write

x = (1− s)t(h) + st(k)

for some s ∈ (0, 1) and define

ρ(g)(x) = (1− s)t(gh) + st(gk).

It is a long check, but this works, and defines a dynamic realisation of (G,<). □
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One can check that dynamic realisations, as defined in the previous proof, are unique up to
conjugation.

Proposition 1.14. Any two dynamic realisations of (G,<) are conjugate. In other words, given
tight embeddings t, t′ : (G,<) → (R, <) and corresponding dynamic realisations ρ, ρ′ : G →
Homeo+(R), there exists a homeomorphism h : R → R such that

ρ(g)(x) = h ◦ ρ(g) ◦ h−1(x)

for all g ∈ G and x ∈ R.

Remark 1.15. This means that the collection of countable, LO groups is precisely the collection
of groups that embed into Homeo+(R). Moreover, the study of orderings of such G is equivalent
to the study of certain embeddings (up to conjugation) of G into Homeo+(R).

Example 1.16. Free groups are left-orderable, because generically, any two homeomorphisms
f, g : R → R will generate a free group in Homeo+(R).

Example 1.17. The Baumslag-Solitar groups B(m,n) = ⟨a, b | abma−1 = bn⟩ are all left-orderable,
and we can exhibit an affine action that demonstrates why in the case where m = 1. Define

ϕ : BS(1, n) → Homeo+(R)
by ϕ(a)(x) = nx and ϕ(b)(x) = x + 1 for all x ∈ R. One can check that this is an embedding, so
that BS(1, n) is LO.

In fact, if n > 0 then BS(1, n) is BO, but this action does not satisfy ϕ(g)(x) > x for some x ∈ R
implies ϕ(g)(x) > x for all x ∈ R, so it’s not a dynamic realisation of any bi-ordering. □

These groups are LO, what about non-LO examples? How do they come about?

Example 1.18. Consider the group

G = ⟨a, b | bababa−1b2a−1, ababab−1a2b−1⟩.
This group is not LO, but it is torsion-free since it happens to be the fundamental group of a
hyperbolic 3-manifold, namely the Weeks manifold. It is torsion-free because the universal cover
of W is H3, which is contractible, so π1(W ) has finite cohomological dimension. This implies it
cannot have torsion elements.

Rewrite the relations as b−1ab−2a = (ab)2 = ba−2ba−1 and a−1ba−2b = (ba)2 = ab−2ab−1. Now
if the group is LO, we can assume a > 1. Then we consider cases:
Case 1. b < id.
Case 2. id < a < b.
Case 3. id < b < a. For example in Case 3, a−1b < 1. But then the relation (ba)2 = a−1ba−2b
leads to a contradiction, as (ba)2 is positive, whereas a−1ba−2b = (a−1b)a−1(a−1b) must be less
than the identity, being a product of three negative elements. □

So far we have given several conditions that a group may satisfy in order to be LO. Next we
focus on conditions satisfied by finite subsets of a given group G that can be used to show G is LO.

First, we introduce a property that a semigroup P ⊂ G can have, which we will call property
(∗):

For every finite set {g1, . . . , gn} ⊂ G \ {id}, there exist ϵi = ±1 such
that id /∈ sg(P \ {id}, gϵ11 , . . . , gϵnn ).

Here, we use sg(S) to denote the subsemigroup of G generated by S ⊂ G.

Theorem 1.19. ([26, Lemma 3.1.1]) Given a semigroup Q ⊂ G, there exists a positive cone P ⊂ G
with Q \ {id} ⊂ P if and only if Q satisfies (∗).
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Proof. Given Q ⊂ G with Q \ {id} contained in some positive cone, it’s clear that (∗) holds, by
choosing ϵi so that gϵii ∈ P .

On the other hand, suppose that Q satisfies (∗). First observe that if g ∈ G \ {id}, then one
of sg(Q \ {id}, g) or sg(Q \ {id}, g−1) must satisfy (∗). For if not, then there exist h1, . . . , hn and
f1, . . . , fm such that

id ∈ sg(Q \ {id}, g, hϵ11 , . . . , hϵnn )

no matter the choice of ϵi’s, and

id ∈ sg(Q \ {id}, g−1, fν11 , . . . , fνmm )

no matter the choice of νi’s. But then

id ∈ sg(Q \ {id}, gϵ, hϵ11 , . . . , hϵnn , fν11 , . . . , fνmm )

no matter the choice of ϵ, ϵi’s, and νi’s, contradicting that Q satisfies (∗).
So now we set

M = {semigroups P ⊂ G with Q ⊂ P that satisfy (∗)}.
The set M is nonempty, since it contains Q, it is partially ordered by inclusion and one can check
that every chain has an upper bound simply by taking unions. So, we can choose P ∈M maximal.

Now (∗) forces P ∩ P−1 ⊂ {id}, and maximality forces G \ {id} ⊂ P ∪ P−1. So P \ {id} is the
positive cone of a left-ordering of G. □
Corollary 1.20. A group G is LO if and only if for all {g1, . . . , gn} ⊂ G\{id}, there exist ϵi = ±1
such that id /∈ sg(gϵ11 , . . . , g

ϵn
n ).

Proof. Take Q = {id} in the previous theorem. □
Corollary 1.21. A group G is LO if and only if all of its finitely generated subgroups are LO.

Corollary 1.22. All torsion-free abelian groups are BO.

In fact, it is good enough to consider quotients of all finitely generated subgroups in order to
determine whether or not G is LO.

Theorem 1.23 (Burns-Hale, [9]). A group G is LO if and only if for every finitely generated
H ≤ G, there exists a surjective homomorphism H → L where L is a nontrivial LO group.

Proof. We apply Corollary 1.20, showing by induction that we can always find the necessary ϵi’s.
First note that for all g ∈ G \ {id}, id /∈ sg(g) since there exists a surjection ⟨g⟩ → Z.
Now suppose that for all {g1, . . . , gn} ⊂ G \ {id} with n ≤ k, there exists ϵi = ±1 such that

id /∈ sg(gϵ11 , . . . , g
ϵn
n ). Consider a collection of elements {h1, . . . , hk+1} ⊂ G \ {id}.

Set H = ⟨h1, . . . , hk+1⟩ and choose ϕ : H → L where L is a nontrivial LO group with positive
cone PL ⊂ L. Assume the hi’s are indexed so that ϕ(hi) = id for i = 1, . . . , r and ϕ(hi) ̸= id for
i = r + 1, . . . , k + 1. Note there is at least one hi such that ϕ(hi) ̸= id, since ϕ is a surjection.

Now choose exponents ϵr+1, . . . , ϵk+1 so that ϕ(hi) ∈ PL for i = r+1, . . . , k+1, and by induction,
choose ϵ1, . . . , ϵr such that id /∈ sg(hϵ11 , . . . , h

ϵr
r ).

Given w ∈ sg(hϵ11 , . . . , h
ϵk+1

k+1 ), if w contains any occurences of hr+1, . . . , hk+1 then ϕ(w) ∈ PL and

so w ̸= id. If w contains no such occurences then w ∈ sg(hϵ11 , . . . , h
ϵr
r ) and w ̸= id by induction.

Therefore we have found the exponents needed to apply Corollary 1.20. □
We’ve just spent some time focused solely on LO groups, and it is fair to ask at this point if

there are bi-orderability analogs of the ideas above that characterize left-orderability in terms of
finite subsets.

Theorem 1.24 (Fuchs [22]). A group G is BO if and only if for all {g1, . . . , gn} ⊂ G \ {id}, there
exist ϵi = ±1 such that id /∈ nsg(gϵ11 , . . . , g

ϵn
n ), where nsg(S) is the normal subsemigroup of G

generated by S.
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It’s not as straightforward as in the previous case, but this also leads to:

Theorem 1.25. A group G is BO if and only if every finitely generated subgroup of G is BO.

This allows us to tidy up a few earlier arguments that depended on the cardinality of certain
generating sets:

Corollary 1.26. All free groups are BO.

Despite this, there is no BO version of the Burns-Hale theorem.

Example 1.27. The group K = ⟨x, y | xyx−1 = y−1⟩ satisfies: For all finitely generated H ≤ K,
there exists a surjection H → Z. Despite these maps onto BO quotients, K is clearly not BO. □

With these many techniques, it is perhaps not surprising that LO groups often admit many
possible left-orderings. In fact, G only admits finitely many left-orderings when it is a Tararin
group, meaning G admits a rational series

T0 = {id} ◁ T1 ◁ · · · ◁ Tk−1 ◁ Tk = G

whose quotients Ti/Ti−1 are rank one abelian, and such that Ti/Ti−2 is not bi-orderable for any
i = 2, . . . , k. For all other groups, there are uncountably many left-orderings.

Bi-orderings behave differently. In this case, there are groups that admit finitely many, countably
infinitely many, and uncountably many bi-orderings. However there are no “structure theorems”
saying exactly which groups exhibit which kind of behaviour. I.e., the following is open:

Question 1.28. The following questions are open as of the time of writing.

(1) Determine which groups admit finitely many bi-orderings.
(2) Determine which groups admit countably infinitely many bi-orderings.
(3) A nonidentity element g ∈ G is generalized torsion if a product of conjugates of g is equal to

the identity. If G is generalized torsion free, must G be LO? (Kourovka Notebook Problem
16.48)

2. Lecture 2: Circular orderings and central extensions

Our goal here will be to introduce circular orderings as an intermediate tool that is to be used
when attempting to left-order a group, because this is how they are often used in the study of
orderability of 3-manifold groups. First, the following is a way of circular ordering a set, which is
not yet a group.

Definition 2.1. A circular ordering c of a set S is a function c : S3 → {0,±1} such that for all
s1, s2, s3, s4 ∈ S, the following hold:

(1) c−1(0) = {(s1, s2, s3) | si = sj for some i ̸= j}, and
(2) c(s2, s3, s4)− c(s1, s3, s4) + c(s1, s2, s4)− c(s1, s2, s3) = 0.
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If g = id, h = id, or gh = id, we have f (c(f))(g, h) = f(g, h). Assume g 6= id, h 6= id, and gh 6= id.1

Then id, g, gh are all distinct and2

f (c(f))(g, h) =
1

2
(1 � c(f)(id, g, gh)) = f(g, h).

Similarly, let g1, g2, g3 2 G. If they are not all distinct, then c(f(c))(g1, g2, g3) = c(g1, g2, g3) = 0, so3

assume they are all distinct. Then g�1
1 g2 6= id, g�1

2 g3 6= id, and (g�1
1 g2)(g

�1
2 g3) 6= id. Then4

c(f(c))(g1, g2, g3) = 1 � 2f (c)(g�1
1 g2, g

�1
2 g3) = c(g1, g2, g3)

completing the proof. ⌅5

Remark 2.4. Intuitively, a circularly-ordered group is a way of placing the elements of the group6

on a circle such that their order around the circle respects the group operation. A circular or-7

dering c 2 CH(G) captures this by declaring that c(g1, g2, g3) = 1 whenever one encounters the8

elements (g1, g2, g3) in that order when proceeding counterclockwise around the circle. Similarly9

c(g1, g2, g3) = �1 when they are encountered in the reverse order. Property (3) in Definition 2.110

says the order of any triple around the circle is preserved under left-multiplication. For a circular11

ordering f 2 CI(G), intuitively f(g, h) = 1 if right multiplication by h pulls g around the circle in12

a counterclockwise direction and past the identity, and f(g, h) = 0 if it does not.13

c(g1, g2, g3) = 1 c(g1, g2, g3) = �1 f(g, h) = 1 f(g, h) = 0

g1

g2
g3

g1

g3

g2 id

g

gh id

g

gh

14

Since the theory around central extensions relies on inhomogeneous 2-cocycles (see Section 2.1), for15

the remainder of this paper a circular ordering on a group G will be an element f 2 CI(G), unless16

expicitly stated otherwise. If a group G admits a circular ordering we say G is circularly-orderable.17

When G comes equipped with a circular ordering f , the pair (G, f) will be called a circularly-ordered18

group.19

Lexicographic circular orderings. As noted in the introduction, it is not true that circular-20

orderability is a property that is preserved under taking extensions. However, an extension of a21

circularly-ordered group by a left-ordered group can be circularly-ordered by a standard lexico-22

graphic construction, which we review here (cf [5, Lemma 2.2.12]).23

It follows from the cocycle condition that for a homogeneous circular ordering c on a group G,24

that if � 2 S3 is a permutation, then c(g1, g2, g3) = (�1)sgn(�)c(g�(1), g�(2), g�(3)) for all triples25

(g1, g2, g3) 2 G3. Therefore, specifying the value of c on a triple specifies the value of c for all26

permutations of that triple.27

Suppose 1 ! K ! G
�! H ! 1 is a short exact sequence such that (K, <) is a left-ordered28

group and (H, cH) is a circularly-ordered group with cH 2 CH(H). Let c< 2 CH(K) be defined by29

c<(k1, k2, k3) = 1 if k1 < k2 < k3. Define the lexicographic circular ordering c 2 CH(G) by30

c(g1, g2, g3) =

8
><
>:

cH(�(g1),�(g2),�(g3)) if �(g1),�(g2), and �(g3) are all distinct,

c<(g�1
2 g1, id, g�1

1 g2) if �(g1) = �(g2) 6= �(g3),

c<(g�1
1 g3, id, g�1

1 g2) if �(g1) = �(g2) = �(g3).
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This encodes the notion of triples of points “going in the right direction” around a circle. If we
want to (left) circularly order a group, then we do:

Definition 2.2. A group G is circularly orderable if there is a circular ordering c : G3 → {0,±1}
such that c(g1, g2, g3) = c(hg1, hg2, hg3) for all h, g1, g2, g3 ∈ G.

You might recognize this as a homogeneous 2-cocycle, which it is, and we will begin to work
cohomologically very shortly.

Example 2.3. The groups Q/Z and S1 are circularly orderable in the obvious way. In particular,
cyclic groups are all circularly orderable. However Z/nZ has ϕ(n) circular orderings (just think
of the number of embeddings into S1) whereas Z has uncountably many circular orderings (again,
think of embeddings into S1).

Example 2.4. Suppose G is LO equipped with an ordering <. Define c<(g1, g2, g3) = sign(σ),
where σ ∈ S3 is the unique permutation such that gσ(1) < gσ(2) < gσ(3). Check that this works,
although schematically it is clear since this is just compactifying the line by adding a point at
infinity, to arrive at S1.

We can also create lexicographic circular orderings, but it doesn’t work exactly as one might
hope. Here, we need a LO kernel and CO quotient, instead of CO quotient and kernel.

Proposition 2.5. Suppose that K is a left-orderable group and H is a circularly-orderable group.
If there is a short exact sequence

1 → K → G→ H → 1

then G is circularly orderable.

Proof. Let c be a circular ordering on H and < a left order on K. Construct a circular ordering c
on G as follows (this is the construction from [10]): Let g1, g2, g3 ∈ G be distinct elements.

(1) If ϕ(g1), ϕ(g2), ϕ(g3) are distinct, c(g1, g2, g3) = c(ϕ(g1), ϕ(g2), ϕ(g3)).
(2) If ϕ(g1) = ϕ(g2) and ϕ(g1) ̸= ϕ(g3), then g

−1
2 g1 ∈ K. If g−1

2 g1 < id, set c(g1, g2, g3) = 1. If

g−1
1 g2 < id, set c(g1, g2, g3) = −1.

(3) If ϕ(g1) = ϕ(g2) = ϕ(g3), g
−1
3 g1, g

−1
3 g2 ∈ K. Let a1 = g−1

3 g1, a2 = g−1
3 g2, a3 = id. There is

a unique permutation σ ∈ S3 such that aσ(1) < aσ(2) < aσ(3). Set c(gσ(1), gσ(2), gσ(3)) = 1.

□
There are also plenty of non-circularly orderable groups, but finding them is a bit tricky. I will

defer examples of such until later, though I will point out that there are some easy finite examples
already available if you are willing to do the work: A finite group is circularly orderable if and only
if it is cyclic (this can be proved directly from the definition, the trick is to show that set G \ {id}
becomes totally ordered and that the minimal element in this total ordering generates G). From
here, we can also provide a significant source of examples that mirrors what we did in the case of
left-orderings.

Theorem 2.6. A countable group G is circularly orderable if and only if G embeds in Homeo+(S
1).

Proof. Starting with G and building an embedding into Homeo+(S
1) can be done similarly to the

case of R, or by constructing an embedding of a certain left-orderable lift into Homeo+(R), which
we will see shortly, and then passing to S1 by quotienting.

On the other hand, we can show that Homeo+(S
1) is circularly orderable as follows. Choose

p ∈ S1 and consider the “short exact sequence”

1 → Stab(p) → Homeo+(S
1) → Homeo+(S

1)/Stab(p) → 1,

where we can identify the left cosets of the stabilizer with the orbit of p. Therefore the left-cosets
are circularly orderable in a way that is preserved by left multiplication on the set of cosets, and
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Stab(p) is left-orderable since it acts in an order-preserving manner on S1 \ {p} ∼= R. Modifying
the previous proposition to accommodate the fact that the stabilizer is not necessarily normal will
give the result. □

Corollary 2.7. The group PSL(2,R) is circularly orderable.

Proof. The action of SL(2,R) on R2 naturally gives an orientation-preserving action of PSL(2,R)
on RP 1, thought of as lines through the origin, which is the circle. Or another way: PSL(2,R)
is the group of orientation-preserving isometries of H2, thought of as unit disk (the Poincaré disk
model). This action extends to the boundary of the disk, which is S1. □

At this point it actually serves our purpose to change to an alternative definition of circular
ordering.

Definition 2.8. A circular ordering on a group G is a function f : G2 → Z satisfying:

(1) f(id, g) = f(g, id) = 0 for all g ∈ G,
(2) f(h, k)− f(gh, k) + f(g, hk)− f(g, h) = 0 for all g, h, k ∈ G,
(3) f(g, h) ∈ {0, 1} for all g, h ∈ G,
(4) f(g, g−1) = 1 for all g ∈ G \ {id}.

6 ADAM CLAY AND TYRONE GHASWALA

If g = id, h = id, or gh = id, we have f (c(f))(g, h) = f(g, h). Assume g 6= id, h 6= id, and gh 6= id.1

Then id, g, gh are all distinct and2

f (c(f))(g, h) =
1

2
(1 � c(f)(id, g, gh)) = f(g, h).

Similarly, let g1, g2, g3 2 G. If they are not all distinct, then c(f(c))(g1, g2, g3) = c(g1, g2, g3) = 0, so3

assume they are all distinct. Then g�1
1 g2 6= id, g�1

2 g3 6= id, and (g�1
1 g2)(g

�1
2 g3) 6= id. Then4

c(f(c))(g1, g2, g3) = 1 � 2f (c)(g�1
1 g2, g

�1
2 g3) = c(g1, g2, g3)

completing the proof. ⌅5

Remark 2.4. Intuitively, a circularly-ordered group is a way of placing the elements of the group6

on a circle such that their order around the circle respects the group operation. A circular or-7

dering c 2 CH(G) captures this by declaring that c(g1, g2, g3) = 1 whenever one encounters the8

elements (g1, g2, g3) in that order when proceeding counterclockwise around the circle. Similarly9

c(g1, g2, g3) = �1 when they are encountered in the reverse order. Property (3) in Definition 2.110

says the order of any triple around the circle is preserved under left-multiplication. For a circular11

ordering f 2 CI(G), intuitively f(g, h) = 1 if right multiplication by h pulls g around the circle in12

a counterclockwise direction and past the identity, and f(g, h) = 0 if it does not.13

c(g1, g2, g3) = 1 c(g1, g2, g3) = �1 f(g, h) = 1 f(g, h) = 0

g1

g2
g3

g1

g3

g2 id

g

gh id

g

gh

14

Since the theory around central extensions relies on inhomogeneous 2-cocycles (see Section 2.1), for15

the remainder of this paper a circular ordering on a group G will be an element f 2 CI(G), unless16

expicitly stated otherwise. If a group G admits a circular ordering we say G is circularly-orderable.17

When G comes equipped with a circular ordering f , the pair (G, f) will be called a circularly-ordered18

group.19

Lexicographic circular orderings. As noted in the introduction, it is not true that circular-20

orderability is a property that is preserved under taking extensions. However, an extension of a21

circularly-ordered group by a left-ordered group can be circularly-ordered by a standard lexico-22

graphic construction, which we review here (cf [5, Lemma 2.2.12]).23

It follows from the cocycle condition that for a homogeneous circular ordering c on a group G,24

that if � 2 S3 is a permutation, then c(g1, g2, g3) = (�1)sgn(�)c(g�(1), g�(2), g�(3)) for all triples25

(g1, g2, g3) 2 G3. Therefore, specifying the value of c on a triple specifies the value of c for all26

permutations of that triple.27

Suppose 1 ! K ! G
�! H ! 1 is a short exact sequence such that (K, <) is a left-ordered28

group and (H, cH) is a circularly-ordered group with cH 2 CH(H). Let c< 2 CH(K) be defined by29

c<(k1, k2, k3) = 1 if k1 < k2 < k3. Define the lexicographic circular ordering c 2 CH(G) by30

c(g1, g2, g3) =

8
><
>:

cH(�(g1),�(g2),�(g3)) if �(g1),�(g2), and �(g3) are all distinct,

c<(g�1
2 g1, id, g�1

1 g2) if �(g1) = �(g2) 6= �(g3),

c<(g�1
1 g3, id, g�1

1 g2) if �(g1) = �(g2) = �(g3).

We can abbreviate this by saying that f is an inhomogenous 2-cocycle that additionally satisfies
f(g, h) ∈ {0, 1} for all g, h ∈ G and f(g, g−1) = 1 for all g ∈ G \ {id}, since the first two properties
exactly capture what it means to be an inhomogeneous 2-cocycle. Then there’s a bijection between
circular orderings in terms of c’s and circular orderings in terms of f ’s (e.g. see [13]). Given c,
define f via:

f (c)(g, h) =





0 if g = id or h = id,

1 if gh = id and g ̸= id,
1
2(1− c(id, g, gh)) otherwise,

and conversely, given f , define c via:

c(f)(g1, g2, g3) =

{
0 if gi = gj for some i ̸= j,

1− 2f(g−1
1 g2, g

−1
2 g3) otherwise.

This determines a bijection between the set of circular orderings in terms of c’s on a group G, and
the set of circular orderings written as f ’s. You’re probably wondering why this change matters,
it’s because we want to investigate circular orderings as cocycles in group cohomology, which in
our situation will be easier to do using inhomogeneous cocycles.

To put this all in context, I will need to introduce two objects: The second cohomology group
H2(G;Z) of a group G, and the set of equivalence classes of central extensions of G by Z, denoted
E(G;Z) (for more details and context, see [8, Chapter 4]).
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We set:

Z2(G;Z) = {f : G2 → Z | f(g2, g3)−f(g1g2, g3)+f(g1, g2g3)−f(g1, g2), and f(id, g) = f(g, id) = 0}
and

B2(G;Z) = {f : G2 → Z | ∃h : G→ Z with f(g1, g2) = h(g1) + h(g2)− h(g1g2) and h(id) = 0},
and then set

H2(G;Z) = Z2(G;Z)/B2(G;Z).
This is the second cohomology group of G with integer coefficients (and trivial action on Z). This
obviously fits into the context a complete collection of cohomology groups Hn(G;Z) defined from
collections of inhomogeneous cocycles, but we need only H2.

Remark 2.9. Group cohomology can also be defined by using K(π, 1)’s (Eilenberg-Mac Lane
spaces), that is, topological spaces with prescribed fundamental group π and trivial higher homotopy
groups. Then the cohomology of the group G is defined to be the singular cohomology of the space
K(G, 1).

Next, suppose that we have central extensions

0 −→ Z i1−→ H1
q1−→ G→ 1

and

0 −→ Z i2−→ H2
q2−→ G→ 1.

We say that these extensions are equivalent if there exists a homomorphism ϕ : H1 → H2 such
that ϕ ◦ i1 = i2 and q2 ◦ ϕ = q1, and these conditions force ϕ to be an isomorphism. The set of
equivalence classes of central extensions is E(G;Z).

There’s a bijection H2(G;Z) ⇐⇒ E(G;Z), sending id ∈ H2(G;Z) to the trivial extension G×Z,
and it works like this:
Starting with a cocycle: Given a inhomogeneous cocycle f : G2 → Z, define a central extension

G̃f by taking the set G×Z and equipping it with the multiplication (g, a)(h, b) = (gh, a+b+f(g, h)).
Then there’s a central copy of Z generated by (id, 1) and an obvious quotient onto the original group

G, making G̃f the required central extension.
Starting with a central extension:. Suppose we have

1 −→ Z i−→ H
q−→ G→ 1,

and choose a function s : G→ H with s(id) = id and q◦s(g) = g for all g ∈ G. I.e. s is a normalized
section. Define a function f : G2 → Z by capturing the defect of s from being a homomorphism,
i.e. f(g, h) is the element in i(Z) given by s(g)s(h)s(gh)−1. We need to check this is a cocycle, but
it will work out.

Fair question: If this classical machinery is applied to circular orderings, which are themselves
cocycles (i.e. elements of Z2(G;Z)), then what is special about the corresponding central extension?

Proposition 2.10. ( [30]) If G is a group and f : G2 → {0, 1} is a circular ordering, then G̃f is
a left-ordered group.

Proof. We need only define a positive cone. Recalling that the elements of G̃f are pairs (g, a) ∈
G× Z, the positive cone is:

P = {(g, a) | n ≥ 0} \ {(id, 0)}.
To check that P ·P ⊂ P is easy, just apply the multiplication (g, a)(h, b) = (gh, a+ b+ f(g, h)) and
observe that a, b ≥ 0 implies a+ b+ f(g, h) ≥ 0 since f takes values in {0, 1}.
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To see that P ⊔ P−1 = G̃f \ {(id, 0)}, we observe that for all g ∈ G \ {id}, we have(g, a)−1 =
(g−1,−a− 1), since

(g, a)(g−1,−a− 1) = (id, a− a− 1 + f(g, g−1)) = (id, 0);

and for (0, a) the inverse is (0,−a). In particular (g, 0)−1 = (g−1,−1) when g ̸= id, which is
usually the case that causes some concern for most people’s intuition. In any event, we conclude

P ∩ P−1 = ∅, with P ∪ P−1 = G̃f \ {(id, 0)} being obvious. □

We’ve now reached our main goal:

Corollary 2.11. Suppose that G is a group with circular ordering f : G2 → {0, 1} such that
[f ] = id ∈ H2(G;Z). Then G is left-orderable.

Proof. Since [f ] = id ∈ H2(G;Z) and our correspondence between H2(G;Z) and E(G;Z) maps

the identity to the equivalence class of the trivial extension, we know that G̃f is isomorphic to the

group G× Z. In particular, since G̃f is left-orderable, so is G× Z, so G is left-orderable. □
Remark 2.12. . We can be a little more careful and improve these observations:

(1) We can actually do better than asserting that there’s an abstract isomorphism of G̃f with
G × Z. Since [f ] = id, there’s a map η : G → Z satisfying η(id) = 0 and f(g, h) =

η(g) + η(h)− η(gh) for all g, h ∈ G. Then ψ : G̃f → G× Z given by ψ(g, a) = (g, a+ η(g))
is an explicit isomorphism.

(2) While this tells us that G is left-orderable, it’s not telling us that f itself is a left-ordering.
What I mean here is: Recall that given a LO < of G, we set c<(g1, g2, g3) = sign(σ),
where σ ∈ S3 is the unique permutation such that gσ(1) < gσ(2) < gσ(3). We could equally
rewrite this as f< for a inhomogeneous cocycle f , and call such an f a “secret left-ordering”
because, well, secretly it’s just a left-ordering. This theorem does not imply that f is a
secret left-ordering.

To detect secret left-orderings, we need something more delicate. We can define

Z2
b (G;Z) = {f ∈ Z2(G;Z)|f is a bounded function},

and

B2
b (G;Z) = {f ∈ B2(G;Z)|f is a bounded function},

and then set

H2(G;Z) = Z2
b (G;Z)/B2

b (G;Z).
This defines the second bounded cohomology group. The next proposition and its proof come from
[2], though the result first appeared in a dynamical language in [23].

Proposition 2.13. A circular ordering f : G2 → {0, 1} is a secret left-ordering if and only if
[f ] = id ∈ H2

b (G;Z).

Proof. Suppose f is a secret left ordering. Let P be the positive cone of the secret left ordering <
corresponding to f . Define a bounded function d : G→ Z by

d(g) =

{
0 if g ∈ P ∪ {id}
1 if g ∈ P−1.

Then for all g, h ∈ G, ff(g, h) = d(g)− d(gh) + d(h). Therefore [f ] = id ∈ H2
b (G;Z).

Conversely, suppose that for all g, h ∈ G, ff(g, h) = d(g) − d(gh) + d(h) for some bounded
function d : G→ Z, and recall f(g, h) ∈ {0, 1}. We first show d(g) ∈ {0, 1} for all g ∈ G.

Suppose d(g) < 0 for some g ∈ G. Then d(g) + d(gk−1)− d(gk) = f(g, gk) ≥ 0 and via induction
on k we may conclude that d(gk) ≤ −k for all k ∈ N, contradicting the boundedness of d. Similarly,
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if d(g) ≥ 2, induction on k with the fact that d(g) + d(gk−1) − d(gk) ≤ 1 allows us to conclude
d(gk) ≥ 1 + k for all k ∈ N. Therefore d(g) ∈ {0, 1} for all g ∈ G.

Now define P ⊂ G by g ∈ P ∪ {id} if and only if d(g) = 0. We check that P is a positive cone.
Given g, h ∈ P , note d(g)+ d(h)− d(gh) ∈ {0, 1}. Therefore we must have d(gh) = 0 so P ·P ⊂ P .
Let g ∈ G \ {id}. If d(g) = 0, then d(g) + d(g−1) = fc(g, g

−1) = 1. Therefore d(g−1) = 1. Similarly
if d(g) = 1, d(g−1) = 0. Therefore G = P ⊔ {id} ⊔ P−1 and P is a positive cone on G.

Let < be the left ordering on G with positive cone P . It suffices to show g1 < g2 < g3 implies
cf (g1, g2, g3) = 1. If g1 < g2 < g3, then d(g

−1
1 g2) = d(g−1

1 g3) = d(g−1
2 g3) = 0. We can recover cf

from f via the prescription

cf (g1, g2, g3) =

{
0 if gi = gj for some i ̸= j

1− 2f(g−1
1 g2, g

−1
2 g3) otherwise.

Since g1, g2, and g3 are distinct we have

cf (g1, g2, g3) = 1− 2f(g−1
1 g2, g

−1
2 g3) = 1− 2(d(g−1

1 g2) + d(g−1
2 g3)− d(g−1

1 g3)) = 1

completing the proof. □
With all this, we’re able to arrive at a testable criterion for circular orderability of a group.

Theorem 2.14. ([1, Theorem 2.6]) Suppose that f is a circular ordering of G such that [f ] ∈
H2(G;Z) has order k. Then G contains a left-orderable normal subgroup H such that G/H ∼= Z/kZ.

Proof. Consider the cocycle kf : G2 → {0, k} defined by taking k times the inhomogeneous cocycle
f . Since we assume [f ] has order k, we know that [kf ] = id ∈ H2(G;Z), and thus there exists a
map η : G→ Z satisfying η(id) = 0 and kf(g, h) = η(g)− η(gh) + η(h) for all g, h ∈ G. Therefore
if qk : Z → Z/kZ is the quotient then qk ◦ η : G→ Z/kZ is a homomorphism, since the defect of η
from being a homomorphism is kf(g, h), an element divisible by k. One can check that this map
is surjective since (if not) this would force [f ] to be of finite order less than k.

Now we determine the kernel. Note that there’s an injective map ϕ : G̃f → G̃kf given by

ϕ(g, a) = (g, ka), and since [kf ] = id, there’s an isomorphism ψ : G̃kf → G× Z given by ψ(g, a) =
(g, a+ η(g)).

On the other hand, the kernel of qk ◦ η is precisely the subgroup

H = {g ∈ G | η(g) is divisible by k }
of G, which is obviously isomorphic to the subgroup

H ′ = {(g, 0) | ∃a ∈ Z such that ka+ η(g) = 0} ≤ G× Z.

But this last subgroup is inside the subgroup ψ ◦ ϕ(G̃f ), which is a left-orderable subgroup since

ψ ◦ ϕ is injective and G̃f is LO. So H ′ and thus H is LO. □
This finally gives a way to construct interesting non-circularly orderable groups, which we illus-

trate by example.

Example 2.15. Consider the group

G = ⟨a, b | bababa−1b2a−1, ababab−1a2b−1⟩.
from the first lecture, the fundamental group of the Weeks manifold W , which is the hyperbolic
3-manifold of smallest volume. It satisfies H2(G;Z) ∼= H2(W ;Z) ∼= H1(W ;Z) ∼= Z/5Z ⊕ Z/5Z,
where the first isomorphism is because W is a K(π, 1) and the second isomorphism is Poincaré
duality. In particular, every nontrivial element of H2(G;Z) is of order five. Supposing there is a
circular ordering f of G, we consider two possibilities:

(1) [f ] = id ∈ H2(W ;Z). This would mean that G is left-orderable, which it is not (see first
lecture).
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(2) [f ] ̸= id ∈ H2(W ;Z) and has order 5. Then G must have an index 5 normal LO subgroup.
This is a computational problem that we can attack by computer, and Calegari-Dunfield
did just that in [11]. They showed all index 5 normal subgroups are not LO, so G is not
CO.

Remark 2.16. Why pass to f instead of using c?
The reasons are twofold. First, describing central extensions is easier using inhomogeneous

cocycles. Also surprisingly, [c] and [f ] are different elements in H2 if you apply the standard
“change of coordinates” to pass from homogeneous to inhomogeneous cocycles. We find [c] = 2[fc],
so which one is “correct”?

There is another natural way to construct a left-orderable central extension of a circularly ordered
group G, if the group is countable. You can first use the circular ordering c to build an embedding
ρ : G→ Homeo+(S

1), then take the preimage in Hõmeo+(S
1) to arrive a subgroup of Homeo+(R)

(hence a LO group) that is a Z-central extension of G. If we look at the element of H2(G;Z)
corresponding to this central extension, it’s not [c], it’s [fc]!

Lecture 3: Ordering 3-manifold groups

All our 3-manifolds will be compact and connected unless otherwise specified, and they’ll always
be orientable/oriented to keep things simple. Some theorems below have non-orientable counter-
parts. We initiate the study by reducing the problem to studying prime manifolds. Recall that
a n-manifold M other than Sm is called prime if, whenever M ∼= M1#M2 then one of M1 or
M2 is homeomorphic to Sn. Here, # is the connect sum of M1 and M2. This is defined by
choosing n-balls Bi ⊂ int(Mi) for i = 1, 2 with sufficiently nice boundary (i.e. the boundary
sphere has a product neighbourhood) and a homeomorphism h : ∂B1 → ∂B2 and then gluing
M =M1 \ (int(B1)) ∪hM2 \ (int(B2)).

Theorem 2.17. Suppose that M is a compact, connected, oriented 3-manifold other than S3.
Then there exist prime manifolds M1, . . . ,Mn that are unique up to permutation of their indices
and orientation-preserving homeomorphism such that

M =M1# . . .#Mn.

We call the decomposition M1# . . .#Mn the prime decomposition. By the Seifert-Van Kampen
theorem, for a manifold M as in the previous theorem,

π1(M) ∼= π1(M1) ∗ · · · ∗ π1(Mn).

So we need:

Proposition 2.18. The free product G ∗H is left-orderable if and only if G and H are both left-
orderable. Moreover, if G admits a left-ordering <G and H admits a left-ordering <H , then G ∗H
admits a left-ordering < whose restriction to G is <G, and whose restriction to H is <H .

Proof. We present two proofs.
Proof 1: Note there’s a map G ∗ H → G × H that’s induced by the maps g 7→ (g, id) and
h 7→ (id, h). So there’s a short exact sequence

{id} → K → G ∗H q→ G×H → {id},
and we can analyze the kernel of this map as follows. Recall that every non-identity element of
G ∗H can be uniquely written as a product

w = a1a2a3 . . . an

where the ai’s are alternately from G \ {id} and from H \ {id}, we call ℓ(g) = n the length of g and
set ℓ(id) = 0. We first note that K is generated by the set

S = {[g, h] = ghg−1h−1 | g ∈ G \ {id} and h ∈ H \ {id}}.
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To see this, we induct on the length of w ∈ K, first noting that if ℓ(gw) = 0 then w is trivially in
⟨S⟩. Now suppose that for ℓ(w) < n if w ∈ K then w ∈ ⟨S⟩, and consider w ∈ K with ℓ(w) = n.
First we can check that if w ∈ K then ℓ(w) cannot be less than four, and then write

w = a1a2a3 . . . an = (a1a2a
−1
1 a−1

2 )(a2a1a3a4 . . . an) = [a1, a2]w
′

where the ai’s are alternately from G \ {id} and from H \ {id}. Note that ℓ(w′) < n since a1 and
a3 are adjacent and come from the same factor, and so the induction assumption applies, landing
w in ⟨S⟩.

Next, we can in fact check that S is a free basis, to do this we’ll show that no reduced word in
S represents id. Write xg,h in place of [g, h] and suppose

w = xϵ1g1,h1x
ϵ2
g2,h2

. . . xϵngn,hn

where gi ∈ G \ {id} and hi ∈ H \ {id}, ϵi = ±1 and you never have (gi, hi) = (gi+1, hi+1) and
ϵi = −ϵi+1 for some i ∈ {1, . . . , n− 1}. I.e, it’s a reduced word in S.

We can prove that W can be written uniquely as an alternating product a1a2a3 . . . am where the
ai’s are alternately from G \ {id} and from H \ {id}, and either am−1am = g−1

n h−1
n if ϵn = 1 or

am−1am = hngn if ϵn = −1. We prove this by inducting on the length of w in the generators xg,h,
the case of n = 1 being obvious.

Considering only the case ϵn = 1 we first apply the induction assumption to xϵ1g1,h1x
ϵ2
g2,h2

. . . x
ϵn−1

gn−1,hn−1

to write w as either

w = a1a2 . . . g
−1
n−1h

−1
n−1x

ϵn
gn,hn

= a1a2 . . . g
−1
n−1h

−1
n−1gnhng

−1
n h−1

n

or
w = a1a2 . . . hn−1gn−1gnhng

−1
n h−1

n .

Note that in the first case, we’re done, and in the second case, hn−1gn−1gnhn ̸= id by our assumption
that w is a reduced word in the xg,h. So we’re done in this case, too. The case of ϵn = −1 is similar.

Now the result follows from

{id} → K → G ∗H q→ G×H → {id},
as we can lexicographically order G×H using given orderings <G and <H . Then K is free, so it’s
LO (in fact BO), and so we can lexicographically order G ∗H. Moreover, the ordering on G ∗H
extends <G and <H . This concludes the first proof.
Proof 2: This is due to Dicks and Sunic [18]. Define a function τ : G ∗H → Z as follows. First,
fix positive cones PG ⊂ G and PH ⊂ H, and given an nonidentity element w ∈ G ∗H \ {id} write
it uniquely as

w = a1a2a3 . . . an
where the ai’s are alternately from G \ {id} and from H \ {id}. Define η(w) to be 0 if ℓ(w) = 1,
and otherwise:

η(w) =





0 if a1, an ∈ G or a1, an ∈ H,
1 if a1 ∈ G and an ∈ H
−1 if a1 ∈ H and an ∈ G

Recall that w = a1a2a3 . . . an and define

τ(w) = |{i | ai ∈ PG ∪ PH}| − |{i | ai ∈ P−1
G ∪ P−1

H }|+ η(w).

One can check that τ(w) is always odd, so that no w ∈ G ∗H \ {id} satisfies τ(w) = 0. Set

P = {w ∈ G ∗H \ {id} | τ(w) > 0}.
Checking this is a positive cone is a quick case argument, and it obviously extends both PH and
PG since τ(g) = +1, τ(h) = +1 whenever g ∈ PG, h ∈ PH . □
Remark 2.19. Both of the constructions in the previous proof can be generalized to the case of
free products with arbitrarily many factors.
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Therefore

Theorem 2.20. Suppose that M is a compact, connected, oriented 3-manifold other than S3 and
that

M =M1# . . .#Mn

is its prime decomposition. Then π1(M) is LO if and only if π1(Mi) is LO for all i = 1, . . . , n.

So we need only investigate prime 3-manifolds. A 3-manifold M is irreducible if every embedded
2-sphere in M bounds an embedded 3-ball in M . This is closely related to primeness, as the
only prime, reducible orientable manifold is S1 × S2. (To show irreducible implies prime is just by
definition, for the other direction, consider separating and non-separating spheres. If non-separating
then you get (S1 × S2) \ int(B3) in M , so you can write it as (S1 × S2)#M0 for some M0. But
primeness says M0

∼= S3.)
So this means that

Theorem 2.21. With M as above, π1(M) is LO if and only if the irreducible factors in its prime
decomposition have LO fundamental group.

So in fact we need only consider irreducible 3-manifolds in our investigation of left-orderability
of π1(M). To go further, we need two theorems:

Theorem 2.22. [24, Theorem 3.15] Suppose that M is orientable and irreducible, and M̃ →M is

a covering space. Then M̃ is irreducible.

Also the famous “Compact Core Theorem” which allows us to cut down an arbitrary 3-manifold
to a smaller, compact submanifold without losing any of the fundamental group.

Theorem 2.23 (Scott, [29]). Suppose that M is a 3-manifold with finitely generated fundamental
group. Then there is a compact submanifold N ⊂ int(M) such that inclusion i : N → M induces
an isomorphism i∗ : π1(N) → π1(M).

These are the main ingredients we need for the following theorem. We follow the presentation
from [15].

Theorem 2.24. [7] Suppose that M is compact, connected, orientable and irreducible, not S3.
Then π1(M) is left-orderable if and only if there exists a surjective homomorphism from π1(M)
onto a nontrivial left-orderable group L.

Proof. If π1(M) is LO then just use the identity map. This gives the easy direction.
The difficult direction is to begin with a map ϕ : π1(M) → L and show that π1(M) is LO. We

aim to apply the Burns-Hale theorem: If we can show that every finitely generated subgroup of
π1(M) has a nontrivial left-orderable quotient, then we’re done.

So let H ⊂ π1(M) be a finitely generated subgroup. There are two cases.
Case 1. The subgroup H has finite index. Then the image of H under the map ϕ is nontrivial
and left-orderable, so this case is done.

Case 2. The subgroup H has infinite index. Then there’s a covering space p : M̃ → M with

p∗(π1(M̃)) = H, which is necessarily noncompact but whose fundamental group is finitely gener-

ated. By Scott, there’s a compact core N for M̃ , and so N must have nonempty boundary. If the
boundary of N contains any 2-spheres, we can cap them off with copies of B3 without changing
the fundamental group.
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To see this, suppose S ⊂ ∂N is a 2-sphere, then by irreducibility of M̃ there’s a 3-ball bounded

by S in M̃ . But as S separates M̃ , either N ⊂ B or B ∩ N = S. The former is impossible since

π1(N) is nontrivial, and the latter means we can take N ′ = N ∪B3 as a new core for M̃ , eliminating
S from the boundary.

But now a standard Euler characteristic argument shows that H1(N ;Z) is infinite, since N has
nonempty boundary with no 2-sphere components. Here’s now. Recall that the Euler characteristic
of a closed 3-manifold is always 0, and we create the double 2N of N where we glue N to a copy
of itself by the identity and observe

0 = χ(2N) = 2χ(N)− χ(∂N).

But since χ(∂N) ≤ 0 from our assumptions, then 2χ(N) = χ(∂N) ≤ 0. But χ(N) is the alternating
sum

1− dim(H1(N ;Q)) + dim(H2(N ;Q))− 0,

and if this is going to be ≤ 0 we’ll need dim(H1(N ;Q)) ≥ 1.

So there’s a map π1(M̃) ∼= π1(N) → H1(N) → Z. This finishes the proof. □

Corollary 2.25. If M is as above and H1(M ;Z) is infinite, then π1(M) is left-orderable.

Proof. There’s the Hurewicz homomorphism π1(M) → H1(M ;Z), and since H1(M ;Z) is a f.g.
infinite abelian group there’s a further homomorphism H1(M ;Z) → Z. Now apply the previous
theorem. □

Remark 2.26. In fact, when H1(M) is infinite the proof of the previous theorem tells us something
more. In this case, every finitely generated subgroup of π1(M) admits a surjection onto Z, not just
onto a nontrivial LO group.

This means that withM above having infinite first homology, π1(M) is locally indicable. In terms
of orderability, this means that π1(M) admits a special kind of left-ordering called a Conradian
left-ordering. Conradian left-orderings of a group G are left-orderings where g, h > id implies
g−1hg2 > id for all g, h ∈ G. While a priori this seems like a bizarre artificial condition, it turns
out to be extremely useful and natural if one does a “deep dive” into orderability. This is the class
of orders that sits naturally between left-orderings and bi-orderings, as in:

{ bi-orderings of G } ⊂ { Conradian orderings of G } ⊂ { left-orderings of G}.
Corollary 2.27. Suppose that M is as above, then every nontrivial infinite-index subgroup of
π1(M) is LO.

Proof. We just repeat the proof of Case 2 in the proof of the previous theorem, noting that we
didn’t need ϕ for that part of the theorem. □

We can also come up with a circular orderability version of this theorem. Recall that a cyclic
cover is by definition a regular covering space whose deck transformation group is cyclic.

Theorem 2.28. Suppose that M is as above (compact, connected, orientable and irreducible) and
has infinite fundamental group. Then π1(M) is circularly orderable if and only if there exists a
surjective homomorphism from π1(M) onto an infinite circularly orderable group.

Proof. If π1(M) is CO, then just use the identity map. This is the easy direction.
Supposing there exists such a surjection onto an infinite circularly orderable group C, we get a

corresponding short exact sequence

1 → K → π1(M) → C → 1

where K is left-orderable by the previous corollary. It follows that π1(M) is lexicographically
circularly orderable. □
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We need the next result to fully investigate circular orderability.

Theorem 2.29. An irreducible 3-manifold with infinite fundamental group is a K(π, 1), i.e. it has
trivial higher homotopy groups. In particular, this means that we can calculate the group cohomology
H2(π1(M);Z) from the cohomology of the manifold M , i.e. H2(π1(M);Z) ∼= H2(M ;Z).

Proof. First we observe that M̃ has π2(M̃) ∼= π2(M) = 0 since it is irreducible. This follows from
the sphere theorem (which says that if π2 is nontrivial, then there’s a nontrivial element represented

by an embedded sphere–but by irreducibility, all such elements are trivial). Next Hi(M̃ ;Z) = 0

for i ≥ 3 since M̃ is noncompact and of dimension 3. But now the Hurewicz theorem says that

πi(M̃) = 0 for i ≥ 3, and so πi(M) = 0 for i ≥ 3 as well. □
We can therefore compute the cohomology of π1(M) from the cohomology of M , when it’s

irreducible. Now we are ready to show:

Theorem 2.30 ([1]). Suppose that M is a compact, connected, orientable, irreducible 3-manifold
with infinite fundamental group. Then π1(M) is circularly orderable if and only if M admits a
finite cyclic cover with left-orderable fundamental group.

Proof. If H1(M ;Z) is infinite, then π1(M) is LO, hence circularly orderable, and so there is nothing
to prove in this case (take the trivial cover).

On the other hand, suppose H1(M ;Z) is finite and π1(M) is circularly orderable with circular
ordering f . Then H1(M ;Z) ∼= H2(M ;Z) by Poincaré duality and H2(M ;Z) ∼= H2(π1(M);Z) since
M is irreducible. Thus [f ] has finite order, say it has order k. Then by Lecture 2 there is a normal,
left-orderable subgroup H such that π1(M)/H is cyclic.

On the other hand, if M admits such a cover then we can constuct a lexicographic circular
ordering of π1(M) in the obvious way. □

Therefore we have reduced the problem of determining when π1(M) is LO, or circularly orderable,
to the case of compact, connected, orientable, irreducible 3-manifolds with finite first homology.
This is exactly where we arrive at the L-space conjecture, which says:

Conjecture 2.31. (The L-space conjecture, [6, Conjecture 1], [25, Conjecture 5]) Suppose that M
is a compact, connected, orientable irreducible 3-manifold with finite first homology, other than S3.
Then the following are equivalent:

(1) M is not a Heegaard Floer homology L-space;
(2) M admits a co-orientable taut foliation;
(3) π1(M) is left-orderable.

There’s also a CO version of this conjecture, which comes from putting together what we saw so
far.

Conjecture 2.32. (The L-space conjecture, circular orderability version, [1]). Suppose that M is
a compact, connected, orientable irreducible 3-manifold with finite first homology that is not a lens
space. Then the following are equivalent:

(1) There exists a finite cyclic cover of M that is not an L-space.
(2) There exists a finite cyclic cover of M that supports a co-orientable taut foliation.
(3) The fundamental group of M is circularly orderable.

Let’s investigate how to deal with left-orderability of a few of these kinds of manifolds, coming
from easy constructions. The first is Seifert fibred manifolds. We recall one characterization of
these manifolds, rather than their usual definition:

Theorem 2.33. (Epstein, [19]). If M is a compact 3-manifold with a foliation whose leaves are
circles, then M is a Seifert fibre space.
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Here’s how to construct some such manifolds, following Hatcher, which we use to understand the
fundamental group. We fix:

(1) Σ a compact, connected surface with m boundary components.
(2) disks D1, . . . , Dn ⊂ int(Σ), set Σ′ = Σ \ (int(D1) ∪ . . . ∪ int(Dn)),
(3) M ′ = Σ′ × S1.
(4) For each boundary torus of M ′, H1(Ti;Z) = H1(S

1 × ∂Di;Z) has basis
{[{1} × ∂Di], [S

1 × {pt}]} = {[h∗i ], [h]}.
Choose n reduced fractions βi

αi
⊂ Q and glue D2 × S1 to Ti by a homeomorphism sending

∂D2 × {y} to a curve representing αi[h
∗
i ] + βi[h].

From the Seifert-Van Kampen theorem, when Σ is closed and orientable and g ≥ 0 then

π1(M) = ⟨a1, b1, . . . , ag, bg, γ1, . . . , γn, h |
h central , γ

αj

j = h−βj , [a1, b1] . . . [ag, bg]γ1 . . . γn = 1⟩.
when nonorientable then g > 0 and

π1(M) = ⟨a1, . . . , ag, γ1, . . . , γn, h |
ajha

−1
j = h−1, γ

αj

j = h−βj , γjhγ
−1
j = h, a21 . . . a

2
gγ1 . . . γn = 1⟩,

One checks that if Σ ̸= S2,RP 2 or ∂Σ ̸= ∅, then |H1(M)| = ∞ and in these cases left-orderability
is dealt with by the Corollary above since the only non-prime SFS is RP 3#RP 3.

It is a fun exercise (for some definition of fun) to show that if Σ = RP 2 then the group written
above is not left-orderable.

We’ll show a simple trick to deal with H1(M ;Z) = 0 and Σ = S2.

Theorem 2.34. If M is a Seifert fibred manifold with H1(M ;Z) = 0 other than the Poincaré
homology sphere Σ(2, 3, 5) or S3, then π1(M) is left-orderable.

Proof. Since we have ruled out S3 and lens spaces, we arrive at n ≥ 3. The fundamental group
simplifies to be

π1(M) = ⟨γ1, . . . , γn, h | h central , γ
αj

j = h−βj , γ1 . . . γn = 1⟩
where the integers αi ≥ 2 are pairwise relatively prime (this is a simple exercise using presentation
matrices of the abelianization), and we don’t have n = 3 with {α1, α2, α3} = {2, 3, 5}.

Now consider the group

∆(α1, α2, α3) = ⟨x, y, z | xα1 = yα2 = zα3 = xyz = 1⟩,
which is the so-called triangle group. If the αi ≥ 2 are pairwise relatively prime, this is an infinite
group, with the exception of {α1, α2, α3} = {2, 3, 5}. For all other cases, ∆(α1, α2, α3) is isomorphic
to a group of orientation-preserving isometries of the hyperbolic plane H2, a subgroup of index 2 of
the group of isometries generated by reflection in the sides of a hyperbolic triangle having angles
π/α1, π/α2, π/α3.

There is surjective homomorphism π1(M) → ∆(α1, α2, α3) given by γ1 7→ x, γ2 7→ y, γ3 7→ z,
and all other generators map to the identity. Recalling that Isom+(H2) ∼= PSL(2,R), which is
circularly orderable, this defines a map from π1(M) onto an infinite circularly orderable group (it’s
not too hard to check the group is infinite).

It follows that π1(M) is circularly orderable (since Seifert fibre spaces are irreducible, a fact
I have not mentioned yet). Further, since they are irreducible we know that H2(π1(M);Z)) ∼=
H2(M ;Z) ∼= H1(M ;Z) = 0, by duality and since M is a K(π, 1). But this means that any circular
ordering f of π1(M) must satisfy [f ] = id ∈ H2(π1(M);Z)), so that π1(M) is left-orderable.

□
In fact, the L-space conjecture predicts:
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Conjecture 2.35. If M is a compact, connected, orientable irreducible integer homology 3-sphere
other than S3 or Σ(2, 3, 5) then π1(M) is left-orderable.

We see from the above argument that, in fact, circular orderability of these groups is equivalent
to determining left-orderability.

Also, in regards to left-orderability of the fundamental groups of Seifert fibred manifolds, in
fact we can show much more. We let Hõmeo+(S

1) denote the group of orientation-preserving
homeomorphisms of the real line that commute with translation by one.

Theorem 2.36. [7] Suppose that M is a compact, connected orientable Seifert fibred space. Then
if M ̸= S3 and H1(M ;Z) is finite then the following are equivalent:

(1) π1(M) is left-orderable,
(2) π1(M) admits a nontrivial representation ρ : π1(M) → Hõmeo+(S

1) with ρ(h) = sh(1),
here h is class of the regular fibre and sh(1)(x) = x+ 1 for all x ∈ R,

(3) M admits a horizontal foliation.

Determining whether or not these properties hold, in particular (2), is the focus of a series
of papers by Eisenbud-Hirsch-Neumann, Jankins-Neumann, and Naimi. It amounts to solving a
system of diophantine inequalities involving the αi’s and βi’s.

Lecture 4: Dehn filling and slopes

In this section we will stick to knot complements, but the techniques presented here can be
generalized to knot manifolds, that is, compact, connected, orientable and irreducible manifolds M
other than S1 × S2 having boundary a single torus and H1(M ;Q) = Q.

A slope on the boundary of a knot complement M is an element [α] of the projective space
PH1(∂M ;R) of H1(∂M ;R) where α ∈ H1(∂M ;R) \ {0}. We set

S(M) = {slopes on ∂M}
which we can think of as a copy of S1.

When K ⊂ S3 is a (smooth, say) knot, then set M = S3 \ ν(K), the complement of an open
tubular neighbourhood. Then H1(∂M ;Z) ∼= π1(∂M) admits a basis {µ, λ} where λ is trivial in
H1(M ;Z) ∼= Z and µ serves as a generator (i.e. image under inclusion).

With this natural basis we can identify slopes represented by α ∈ H1(M ;Z) with Q ∪ {∞}, by
identifying p/q with µpλq and µ with ∞. We can also identify slopes with ∂M -isotopy classes of
essential simple closed curves on ∂M .

Remark 2.37. Using R coefficients to define slopes is not the usual way things are done, since we
often want to focus only on simple closed curves or elements of the fundamental group up to sign.
However we will need real coefficients later on.

To each such slope [α] on ∂M we can associate the α-Dehn filling of M given by M(α) =
M ∪f (S1×D2), where f : ∂(S1×D2) → T is a homeomorphism for which f({∗}×∂D2) is a simple
closed curve of slope [α]. A standard argument shows that M(α) is independent of the choice of f
up to a homeomorphism which is the identity on the complement in M of a collar neighbourhood
of T . When α = µpλq we write M(p/q) in place of M(α). Of course we can generalize this to
multiple boundary components, i.e. link complements.

This is a sensible avenue to tackle the L-space conjecture and investigate left-orderability of
fundamental groups of all 3-manifolds, since:

Theorem 2.38. (Lickorish-Wallace) Every 3-manifold arises as a Dehn filling of some link in S3.

It’s also a good way to produce irreducible M with finite first homology, which is what’s left
for us to consider after the work of last lecture. The first homology of M(p/q) is Z/pZ, and the
manifold M(α) is reducible for at most three choices of slope α, by Gordon-Luecke.
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We can also easily compute the fundamental group of the manifold M(α), e.g. by Seifert-Van
Kampen, and it turns out to be

π1(M(α)) = π1(M)/⟨⟨α⟩⟩;
so it is the left-orderability of these quotients that we want to understand.

Owing to the fact that Heegaard Floer homology is well understood with respect to Dehn filling,
the L-space conjecture predicts that the following must hold if the conjecture is to be true:

Conjecture 2.39. Suppose that M is the complement of a knot in S3. If there exists a rational
number r > 0 such that π1(M(r)) is not left-orderable, then π1(M(p/q)) is left-orderable if and only
if p/q ∈ (−∞, 2g(K)− 1).

Remark 2.40. Two comments are in order:

(1) Here, g(K) is the knot genus, i.e. the minimal genus of a Seifert surface for the knot K.
(2) By −∞ we mean the fraction 1/0, corresponding to a simple closed curve homotopic to

µ. Then M(µ) ∼= S3, and our convention for this lecture is that the trivial group is not
left-orderable.

The takeaway here is that sometimes these manifolds have left-orderable fundamental group,
other times not. So we need techniques to order these groups, and to obstruct the existence of
orderings of these groups. We present the basics of both below, indicating directions for possible
generalizations (and research!).
Techniques for left-ordering Dehn fillings. Here, the general scheme of many techniques is as
follows:

(1) Find a technique for creating representations ρs : π1(M) → Homeo+(S
1) with non-cyclic

image.
(2) Given α = µpλq, find s such that the representation ρs factors through the quotient

π1(M)/⟨⟨α⟩⟩.
(3) Use these representations to create circular orderings f of π1(M(α)), and adjust the ordering

so that [f ] = id ∈ H1(M(α);Z).
In this section we’ll deal with a concrete example following Boyer-Rolfsen-Wiest [7], but indicate

possible generalizations afterwards. We begin with a lemma:

Lemma 2.41. Every nonabelian circularly orderable group is infinite.

Proof. If f is a circular ordering of a finite group G, then we arrive at a central extension

0 → Z → G̃f → G→ 1

where G̃f is left-orderable. Then G̃f is torsion-free, and has an infinite cyclic subgroup of finite

index, which implies that G̃f itself is infinite cyclic (In fact, we don’t need to do something so tricky

here–we can just remark that the lifted ordering on G̃f is Archimedean, so it is an abelian group.
But now it’s a finitely generated torsion free abelian group, so cyclic). But then the quotient G is
also cyclic, so finite circularly orderable groups are cyclic–hence abelian. □

With this fact for future use, we will begin with our favourite knot:



ORDERABLE GROUPS AND 3-MANIFOLDS MINICOURSE NOTES 21

We calculate that the knot group is

G = ⟨x, y | wx = yw⟩

where w = xy−1x−1y. We can observe that µ = x serves as a meridian, and λ = yx−1y−1x2y−1x−1y
serves as a longitude. In particular, [µ, λ] = id.

Now it happens that the representations with nonabelian image ρ : G→ PSL(2,C) are completely
described the so-called Riley polynomial [28], and by finding real solutions to this polynomial we
can discover representations ρ : G → PSL(2,R). For this particular knot, we can go through the

exercise and find that for s ≥ 1+
√
5

2 and for

t =
1 +

√
(s− s−1)4 + 2(s− s−1)2 − 3

2(s− s−1)
∈ R,

we get a representation ρs : G→ PSL(2,R) by setting

ρs(x) =

(
s 0
0 s−1

)
and ρs(y) =

(
s+s−1

2 + t s−s−1

2 + t
s−s−1

2 − t s+s−1

2 − t

)
.

Next, we can observe that the image of every ρs is nonabelian, since (for example) ρs(x) and ρs(y)
never commute since they are not both diagonal. Since PSL(2,R) is circularly orderable, by our
lemma this observation implies that the image of ρ is always an infinite circularly orderable group.

Now we want to find all p/q ∈ Q for which there exists s ∈ R such that ρs(µ
pλq) = ±I, the

identity matrix. We can solve directly, first we observe that since ρs(x) is diagonal and not the
identity, ρs(λ) must also be diagonal since it commutes with ρs(x).

Whatever the matrix ρs(λ) is, all we need to do to guarantee ρ(µpλq) = ±I is confirm that the
(1, 1) entry of ρ(µpλq) is equal to one. So while the (1, 1) entry of ρ(µ) is s, we’ll write ψ(s) for the
(1, 1) entry of ρ(λ), whatever it happens to be.

Then ρ(µpλq) = ±I if and only if spψ(s)q = ±1, or

− ln|ψ(s)|
ln|s| =

p

q
,

and so we have reduced the problem to determining the range of the function

g(s) = − ln|ψ(s)|
ln|s| , where s ≥ 1 +

√
5

2
.

At this point, there’s essentially a first-year calculus type of computation that shows [0, 4) ⊂
g([1+

√
5

2 ,∞)). Therefore for all p/q ∈ [0, 4), there exists a representation ρs : G → PSL(2,R)
with infinite image and satisying ρs(µ

pλq) = ±I. We conclude that for p/q ∈ [0, 4), there are
representations

π1(M(p/q)) → PSL(2,R)

with infinite image, and so π1(M(p/q)) is circularly orderable. But then becauseH1(π1(M(p/q));Z) ∼=
Z/pZ, for every such group there is a finite index normal left-orderable subgroup H ⊂ π1(M(p/q))
with H left-orderable, with index dividing p.

Remark 2.42. Some remarks on improving this result:

(1) Each representation ρs : π1(M(p/q)) → PSL(2,R) yields a circular ordering f of π1(M(p/q))
about which we know almost nothing (we haven’t tried!). With some care, we can improve
the construction above to yield circular orderings with [f ] = id ∈ H2(π1(M(p/q);Z) so that
π1(M(p/q) is left-orderable for all p/q ∈ [0, 4) [6].
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(2) The figure eight knot is special in that there’s an automorphism ψ : G → G that satisfies
ψ(µ) = µ and ψ(λ) = −λ. Therefore every representation ρs : π1(M(p/q)) → PSL(2,R)
yields a representation ρ′s : π1(M(−p/q)) → PSL(2,R) as well, so π1(M(p/q) is left-
orderable for all p/q ∈ (−4, 4).

(3) This technique—using the Riley polynomial—has been pushed to its limit in many, many
papers. Each produces a range of left-orderable fillings for various families of 2-bridge knots.

(4) There is nothing special about representations π1(M(p/q)) → PSL(2,R), aside from having
circularly orderable image. Other techniques for producing such representations will work
as well, namely foliations and Anosov flows combined with universal circle constructions of
Thurston/Fenley ([11, 20]) can produce families of representations

π1(M(p/q)) → Homeo+(S
1),

and then Euler class type arguments in order to produce lifts will similarly produce ranges
of left-orderable Dehn fillings.

Techniques for obstructing left-orderings of Dehn filled manifolds.
Here we need a new object. For a left-orderable group G, set

LO(G) = {P ⊂ G | P is the positive cone of a left-ordering}.
Note that this is a subset of the power set P(G), which we can identify with {0, 1}G. We can
equip {0, 1} with the discrete topology, and {0, 1}G with the product topology, and then give
LO(G) ⊂ P(G) the subspace topology.

A more concrete description is: We give LO(G) the topology generated by the subbasic open
sets Ug = {P ∈ LO(G) | g ∈ P} for all g ∈ G \ {id}, so arbitrary open sets look like

n⋂

i=1

Ugi = {positive cones containing g1, . . . , gn} = {orderings where g1, . . . , gn are positive}.

This space of left-orderings of G is a compact, totally disconnected space, and if G is countable,
then it is metrizable. Whenever H ≤ G, we can define the restriction map r : LO(G) → LO(H),
given by r(P ) = P ∩H. This map happens to be continuous.
The space LO(Z2). Given a line L ⊂ R2, there are two orderings of Z2 determined by L if the
slope is irrational, and four if rational. When the line L has irrational slope, the positive cones
of the two corresponding orderings are given by declaring all elements to a given side of L to be
positive. When L has rational slope, then L ∩ Z2 ∼= Z, and we make four lexicographic orderings
of Z2 from the short exact sequence

0 → L ∩ Z2 → Z2 → Z → 0.

Conversely, one can show that every ordering of Z2 with positive cone P uniquely determines
a line as follows. First, uniquely extend the positive cone P of Z2 to positive cone P ′ of Q2 by
declaring (p1/q1, p2/q2) > 0 if and only if (p1q2, p2q1) ∈ P (i.e. we clear denominators by multiplying
by q = q1q2). Set

L(P ) = {x ∈ R2 | every nbhd of x contains elements of P ′ and (P ′)−1 }.
One can check that indeed, L is a line.

Thus there is a map LO(Z2) → RP 1 given by P 7→ [L(P )], in particular there’s a map
LO(H1(∂M ;Z)) → S(M) by sending a positive cone to its corresponding slope. Define the slope
map to be the composition

s : LO(π1(M))
r→ LO(π1(∂M)) = LO(H1(∂M ;Z)) → S(M),

defined by s(P ) = [L(P ∩ π1(∂M))]. In plain terms:
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We start with an ordering of π1(M), and restrict it to the subgroup π1(∂M), which is just a copy
of Z2 since inclusion of the torus boundary induces an injective map on the level of fundamental
groups. Then look at the line determined by this ordering.

Proposition 2.43 ([16]). Suppose that M is the complement of a knot in S3. If M(α) is LO then
[α] is in the image of the slope map.

Proof. Suppose that L ⊂ R2 is the line corresponding to the slope [α], i.e. [L] = [α]. To prove the
proposition, we must show that there exists an ordering of π1(∂M) that:

(1) Is defined lexicographically from the short exact sequence

0 → L ∩ π1(∂M) → π1(∂M) → Z → 1,

so that the order maps to the correct slope, and
(2) is in the image of the restriction map r : LO(π1(M)) → LO(π1(∂M)).

To this end, we consider the short exact sequence

1 → ⟨⟨α⟩⟩ i→ π1(M)
q→ π1(M(α)) → 1.

By assumption π1(M(α)) is left-orderable, and since this means the normal closure ⟨⟨α⟩⟩ is infinite
index in π1(M), it’s left-orderable, too. Choose positive cones Q ⊂ ⟨⟨α⟩⟩ and R ⊂ π1(M(α)) and
set P = i(Q) ∪ q−1(R).

Then we observe that ⟨⟨α⟩⟩∩π1(∂M) = ⟨α⟩, because if it were rank two then the quotient would
be not left-orderable (either trivial or contain torsion). Therefore the restriction r(P ) = P∩π1(∂M)
defines an ordering of π1(∂M) that is lexicographic as in (1) above, with (2) being automatic.
Therefore s(P ) = [α]. □

Now we make a simple observation, again restricting to knots in S3 to keep things simple:

Proposition 2.44 ([16]). Suppose that we have integers p, q, r, s > 0 and that p/q > r/s > 0, and
that M is the complement of a knot in S3 with meridian and longitude {µλ}. If every positive cone
P ∈ π1(M) satisfies:

µpλq ∈ P ⇒ µrλs ∈ P,

then for every a/b ∈ (r/s, p/q) the group π1(M(a/b)) is not left-orderable.

Proof. If π1(M(a/b)) were left-orderable, we would be able to construct a positive cone P ⊂ π1(M)
satisfying s(P ) = a/b. However any such positive cone would yield an ordering of π1(M) where
µpλq and µrλs have opposite signs, since they lie on opposite sides of the line L(P ) ⊂ R2. □
Example 2.45. Consider a (p, q) torus knot in S3 and its complementMp,q. For instance the (3, 5)
torus knot is this:

The knot group in this case is π1(Mp,q) = Gp,q = ⟨a, b | ap = bq⟩. The meridian and longitude
are µ = bjai, where i, j are integers satisfying pj + qi = 1, we may assume that p > i > 0 and
0 > j > −q. The longitude is given by λ = µ−pqap.

Now observe that the ap corresponds to the slope µpqλ, i.e. pq
1 = pq. Assume that we have a

left-ordering of Gp,q with µpqλ = ap > id.
Then ap = bq > id, so in fact both a, b > id as well. But then µpq−1λ = µpqλµ−1 = apa−ib−j =

ap−ib−j is a product of positive elements so µpq−1λ > id. Similarly µpq+1λ = µpqλµ = bq(bjai) =
bq+jai > id, as it is a product of positive elements.
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This shows that no slope in the interval [pq − 1, pq + 1] gives a left-orderable group upon Dehn
filling the complement of the torus knot.

In fact, this computation can be improved because the groups Gp,q are one of the few cases where
we know exactly the image of the slope map. One can show:

s(LO(Gpq,)) = [−∞, pq − p− q],

so potentially all the slopes in that interval yield left-orderable fundamental groups upon Dehn
filling. □

Example 2.46. The converse of Proposition 2.44 does not hold, we can provide an explicit positive
cone P of G3,2 = π1(M3,2) such that s(P ) = [µ], but filling along µ gives S3 and so the result is
not a left-orderable fundamental group. Here is the ordering:

First, we note that

G2,3 = ⟨a, b | a3 = b2⟩
is isomorphic to the three-strand braid group

B3 = ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩,
the isomorphism is given by a 7→ σ1σ2 and b 7→ σ1σ2σ1. The meridian µ = b−1a2 becomes σ2 in
our new generators.

Define a positive cone PD ⊂ B3 as follows.
A word w in the generators of B3 will be called 1-positive if all occurences of σ1 in w have positive

exponent. An element β ∈ B3 will be called 1-positive if it admits a 1-positive representative word,
and we set

P1 = {β ∈ B3 | β is 1-positive}.
Now we define

PD = {σk2}k>0 ∪ P1,

and we have a theorem:

Theorem 2.47. (Dehornoy, [17]) The set PD is the positive cone of a left-ordering of B3, called
the Dehornoy ordering.

E.g. the braid σ1σ
−1
2 is positive, since it is written as a word having only positive occurences of

σ1. The sign of the element σ−1
1 σ2σ1 is not immediately clear, but we can rewrite it as

σ−1
1 σ2σ1 = σ2σ1σ

−1
2

and observe that since the new word σ2σ1σ
−1
2 has σ1 with only positive powers, it’s positive.

From the definition, it is clear that PD is a semigroup, but Dehornoy’s main contribution is that
PD ∪ P−1

D = B3 \ {id} and PD ∩ P−1
D = ∅.

Lemma 2.48. The braid σ2 is the least element of PD.

Proof. Suppose that β ∈ PD, let <D denote the corresponding left-ordering. If β = σk2 for some
k > 1, then σ2 <D β. On the other hand if β ∈ P1, then we can choose a representative word
w having only positive occurences of σ1. But then σ−1

2 w also has only positive occurences of σ1,

meaning σ−1
2 β ∈ PD, i.e. σ

−1
2 <D β. □

Because of this, we know that σ2 = µ must be the smallest element of π1(∂M) in the restriction
ordering PD ∩ π1(∂M). This is only possible if the restriction ordering is lexicographic relative to
the short exact sequence

0 → ⟨µ⟩ → π1(∂M) → Z → 0,

i.e. s(PD) = [µ].
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A conjectural picture: Determining the image of this map is related to ongoing work of myself,
Steve Boyer, Ying Hu, Cameron Gordon ([5, 4]), and implicitly many others (they aren’t necessarily
using this language in their work). Again, I state the picture just when M is the complement of a
knot in S3.

Either:

(1) s(LO(π1(M))) = S(M), i.e. the slope map is surjective, and every filling π1(M(α)) is
left-orderable except for α = µ, or

(2) s(LO(π1(M))) = [−∞, 2g(K)−1] and π1(M(p/q)) is left-orderable for all p/q ∈ (−∞, 2g(K)−
1).

This is currently wide open, as being in the image of the slope map is, a priori, very different
than having a left-orderable quotient.

Lecture 5: Amalgams and JSJ decompositions

We already saw how to left-ordering free products, and used this to reduce the question of
left-ordering fundamental groups of 3-manifolds to the situation where M is irreducible. There is
another canonical decomposition in 3-manifold theory, namely the JSJ decomposition, which allows
one to express the fundamental group as a certain kind of free product with amalgamation. So we
investigate left-orderability of these groups, with an eye towards using the JSJ decomposition.

If M is orientable, irreducible and closed, the JSJ decomposition of M provides a unique (up to
isotopy) minimal collection T of embedded, disjoint incompressible tori such that M \ T consists
of pieces M1, . . . ,Mn where each Mi is either Seifert fibered or atoroidal. This decomposition
allows one to realise π1(M) as the fundamental group of a graph of groups whose vertex groups are
π1(M1), . . . , π1(Mn) and whose edge groups are π1(T ) ∼= Z⊕Z, where T ranges over all tori in the
collection T .

By our previous lectures, if M contains essential tori, then π1(M) is thus expressible as a funda-
mental group of a graph of groups, all of whose edge groups and vertex groups are left-orderable.
As no obstruction to left-orderability arises from considering these groups independently, the key
to understanding left-orderability of π1(M) therefore lies in an analysis of the gluing maps used to
reassemble M from the pieces Mi, and the behaviour of the left-orderings of each π1(Mi) restricted
to the components of ∂Mi with respect to these gluing maps. So, for example, in the case of two
pieces we have two fundamental groups of 3-manifolds with torus boundary amalgamated along a
subgroup isomorphic to Z⊕ Z.

Unfortunately the situation is not so easy when it comes to free products with amalgamation.
Suppose that A, G, H are groups equipped with injective homomorphisms ϕ1 : A→ G, ϕ2 : A→ H,
and let S ⊂ G ∗H denote the set

S = {ϕ1(a)ϕ2(a−1) | a ∈ A}.

The free product of G and H amalgamated along the ϕi’s is the quotient group

G ∗ϕi H = G ∗H
/
⟨⟨S⟩⟩ .

This group is not always left-orderable, as the following example shows, while our experience
with free products tells us that sometimes (e.g. for trivial amalgamations) it will certainly be a LO
group.

Example 2.49. We construct the twisted I-bundle over the Klein bottle as follows. Consider
R2 × [−1/2, 1/2] and the action on this space by the group K generated by the maps

f(x, y, z) = (x+ 1, y, z), and g(x, y, z) = (−x, y + 1,−z).
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Set N = (R2 × [−1/2, 1/2])/K, one can check that this defines a Seifert fibred 3-manifold with
torus boundary. Observing that fgf−1 = g−1, its fundamental group is

K = ⟨x, y | xyx−1 = y−1⟩,
and π1(∂N) = ⟨x2, y⟩. This group is left-orderable, in fact with only four left-orderings coming
lexicographically from

1 → ⟨y⟩ → K → Z → 0.

Set Ki = ⟨xi, yi | xiyix−1
i = y−1

i ⟩ for i = 1, 2. Let A = Z ⊕ Z. Note that for each i, the
subgroup ⟨yi, x2i ⟩ is isomorphic to A. Define ϕ1 : A→ K1 by ϕ1(0, 1) = y1, and ϕ1(1, 0) = x21 while
ϕ2 : A→ K1 is given by ϕ2(0, 1) = x22, and ϕ2(1, 0) = y2.

Next observe that both groups Ki are left-orderable since they fit into a short exact sequence
with infinite cyclic kernel and quotient. Moreover, in every left-ordering of Ki with id < yi (there
is at least one of these) we must have yi < xi and therefore yi < x2i . To see this, suppose not,

say xi < yi. Then y−1
i xi < id, and since x−1

i < id, so we also have x−1
i y−1

i xi < id. But then

x−1
i y−1

i xi = yi < id because xiyix
−1
i = y−1

i , this is a contradiction.
Now considering the free product with amalgamation K1 ∗ϕiK2, suppose that it is left-orderable.

Then the argument above applied to K1 ⊂ K1 ∗ϕi K2 tells us that we must have y1 < x21 in every
left-ordering of K1 ∗ϕi K2. On the other hand, x21 = ϕ1(1, 0) = ϕ2(1, 0) = y2 and y1 = ϕ1(0, 1) =
ϕ2(0, 1) = x22, so this inequality forces x22 < y2, which is not possible. So K1 ∗ϕi K2 must not be
left-orderable.

Note that K1 ∗ϕiK2 is the fundamental group of a 3-manifoldW = N1∪ψN2 where Ni are copies
of the twisted I-bundle over the Klein bottle, and ψ : ∂N1 → ∂N2 is a homeomorphism between
their boundary tori inducing the homomorphism ϕ2 ◦ ϕ−1

1 : π1(∂N1) → A→ π1(∂N2). □

So, not only do we sometimes get non-LO groups, we even get non-LO groups in the case where
we’re working with fundamental groups of 3-manifolds glued along incompressible torus boundary
components.

However, we do know necessary and sufficient conditions. First, some notation. For a LO group
G, recall

LO(G) = {P ⊂ G | P is a positive cone }.
Note that LO(G) has an action by conjugation, because when P is a positive cone, so is gPg−1

(it happens this is an action by homeomorphisms). A family N ⊂ LO(G) is called normal if it
is invariant under this G-action, i.e. P ∈ N ⇒ gPg−1 ∈ N for all g ∈ G. There is a much
more general statement of the following theorem that holds for general amalgams and fundamental
groups of graphs of groups (due to Chiswell, [12]), but we will stick to the case of two factors.

Theorem 2.50 (Bludov-Glass [3]). Suppose that A, G, H are groups equipped with injective homo-
morphisms ϕ1 : A→ G, ϕ2 : A→ H. The free product with amalgamation G ∗ϕi H is left-orderable
if and only if there exist normal families N1 ⊂ LO(G) and N2 ⊂ LO(H) satisfying

(∀P ∈ Ni)(∃Q ∈ Nj) such that ϕ−1
i (P ) = ϕ−1

j (Q)

whenever i, j ∈ {1, 2}.
The proof is well beyond the scope of these notes. The basic idea is to use the normal families,

together with some sophisticated set-theoretic constructions, to create a totally ordered set (X,<)
which admits an effective, order-preserving action by G ∗ϕi H.

Despite the rather technical conditions, this theorem already means that certain types of free
products with amalgamation are always LO.

Corollary 2.51. Suppose that G,H,A are as above, that G and H are LO and A is infinite cyclic.
Then G ∗ϕi H is LO.
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Proof. Just take N1 = LO(G) and N2 = LO(H). These are certainly normal, and if P ∈ N1 then
there are only two possibilities for ϕ−1

1 (P ) since Z ∼= A has only two left-orderings, i.e. we conclude

LO(A) = {ϕ−1
i (P ) | P ∈ Ni}

for i = 1, 2. This means that for P ∈ N1 there is always a Q ∈ N2 such that ϕ−1
2 (Q) = ϕ−1

1 (P ).

This situation is entirely symmetric so the same argument shows every ϕ−1
2 (Q) for Q ∈ N2 has

a corresponding P ∈ N1. □
This actually generalizes in many ways to larger classes of groups, e.g.

Theorem 2.52. Suppose that G,H,A are as above, that G and H are LO and nilpotent. Then
G ∗ϕi H is left-orderable.

Proof. We’ll use one black box here, which is a result due to E. Formanek [21]:

If P ⊂ G \ {id} is a semigroup and G is nilpotent, then there exists a
positive cone Q ⊂ G with P ⊂ Q.

So we can apply the same argument as in the previous proposition, setting N1 = LO(G) and
N2 = LO(H) since LO(A) = {ϕ−1

i (P ) | P ∈ Ni}. □
The case of amalgamation along a cyclic group is already enormously useful in the case of 3-

manfiolds having incompressible torus boundary. In the proof below we follow [14].

Theorem 2.53. [14] Suppose that M1 and M2 are 3-manifolds with incompressible torus bound-
aries, and ϕ : ∂M1 → ∂M2 is a homeomorphism such that W = M1 ∪ϕM2 is irreducible. If there
exists a slope α such that π1(M1(α)) and π1(M2(ϕ∗(α))) are both left-orderable, then π1(W ) is also
left-orderable (here, ϕ∗ is the induced homomorphism on fundamental groups).

Proof. Let Gi denote the fundamental group π1(Mi) for i = 1, 2, each equipped with an inclusion
fi : Z⊕Z → Gi that identifies the peripheral subgroup π1(∂Mi) with Z⊕Z, satisfying ϕ∗ ◦ f1 = f2.
Write q1 : G1 → G1/⟨⟨α⟩⟩ and q2 : G2 → G2/⟨⟨ϕ∗(α)⟩⟩ for the natural quotient maps.

Suppose that π1(M(α)) and π1(M2(ϕ∗(α))) are both left-orderable, and consider ⟨⟨α⟩⟩∩π1(∂M1).
Since this intersection is a nontrivial subgroup of π1(∂M1) ∼= Z ⊕ Z and α is primitive, the
intersection is isomorphic to either Z ∼= ⟨α⟩,Z ⊕ nZ ⊂ π1(∂M1), or Z ⊕ Z ∼= π1(∂M1). If
⟨⟨α⟩⟩ ∩ π1(∂M1) ∼= Z ⊕ nZ, then the quotient π1(M(α)) would have torsion, so this case does
not arise when π1(M1(α)) is left-orderable, the same holds for π1(M2(ϕ∗(α))), so we break our
proof into two cases.

First consider the case where ⟨⟨α⟩⟩ ∩ π1(∂M1) and ⟨⟨ϕ∗(α)⟩⟩ ∩ π1(∂M2) are both infinite cyclic.
Here, ϕ induces an isomorphism ϕ̄ between subgroups

ϕ̄ : q1(π1(∂M1)) → q2(π1(∂M2)),

satisfying ϕ̄◦q1 ◦f1 = q2 ◦f2. The subgroups q1(π1(∂M1)) and q2(π1(∂M2)) are both infinite cyclic,
and by the universal property for pushouts, we have a unique homomorphism

h : G1 ∗ϕ G2 −→ G1/⟨⟨α⟩⟩ ∗ϕ̄ G2/⟨⟨ϕ∗(α)⟩⟩
resulting from the following diagram:

Z⊕ Z
f2

//

f1
��

G2

��

q2

%%

G1
//

q1 ,,

G1 ∗ϕ G2
h

**

G2/⟨⟨ϕ∗(α)⟩⟩

��

G1/⟨⟨α⟩⟩ // G1/⟨⟨α⟩⟩ ∗ϕ̄ G2/⟨⟨ϕ∗(α)⟩⟩

.
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Note that h is nontrivial (in fact, surjective) since the maps q1 and q2 are surjective.
Because the groups π1(M1(α)) and π1(M2(ϕ∗(α))) are both left-orderable, the group G1/⟨⟨α⟩⟩∗ϕ

G2/⟨⟨ϕ∗(α)⟩⟩ is a free product of left-orderable groups amalgamated along a cyclic subgroup. The
image of the map h is therefore a left-orderable group by the previous result, so that π1(W ) ∼=
G1 ∗ϕ G2 is left-orderable.

On the other hand, suppose that either ⟨⟨α⟩⟩ ∩ π1(∂M1) = π1(∂M1), or ⟨⟨ϕ∗(α)⟩⟩ ∩ π1(∂M2) =
π1(∂M2), or both. Without loss of generality, suppose that α satisfies ⟨⟨α⟩⟩ ∩π1(∂M1) = π1(∂M1).
In this setting we have an alternative construction for h as follows.

Z⊕ Z
f2

//

f1
��

G2

��
1

��

G1
//

q1 //

G1 ∗ϕ G2
h

((

G1/⟨⟨α⟩⟩
Note that this is well defined since ⟨⟨α⟩⟩ contains the entire peripheral subgroup π1(∂M1), and h
is again surjective. Now as π1(M1(α)) is left-orderable, G1/⟨⟨α⟩⟩ is left-orderable and h provides
the required homomorphism to a left-orderable group so that π1(W ) is left-orderable. □

This technique is powerful, in the sense that we can do things like left-order all fundamental
groups of integer homology sphere graph manifolds.

Theorem 2.54. [14] Suppose M is an irreducible, toroidal graph manifold (i.e. it is made by gluing
together SF pieces). If M is an integer homology 3-sphere, then π1(M) is LO.

But does not handle all kinds of 3-manifolds W that can arise from gluing together manifolds
along incompressible torus boundary components. Here is a good example of a manifold for which
this trick won’t work.

Example 2.55. [14] Here are the two pieces we will glue together. Our first piece, M1, will be the
complement of the trefoil in S3. Recall from the last lecture that we noted π1(M1) is isomorphic
to the three-strand braid group

B3 = ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩,
and that µ = σ2. We can also compute that λ = ∆2σ−6

2 , where

∆ = σ1σ2σ1.

Our second pieceM2 will be a copy of the twisted I-bundle over the Klein bottle, so that π1(M2)
is the group

⟨x, y|xyx−1 = y−1⟩,
and π1(∂M2) = ⟨y, x2⟩.

Now define

W :=M1 ∪ϕM2

where ϕ is the gluing map of their boundaries defined on the peripheral subgroups by the formula

ϕ(σ2) = y−1, ϕ(∆2) = y−1x2.

By applying the Seifert-Van Kampen theorem, we see that

π1(W ) = ⟨σ1, σ2, x, y|σ1σ2σ1 = σ2σ1σ2, xyx
−1 = y−1, σ2 = y−1,∆2 = y−1x2⟩.

It is not hard to check that π1(W ) abelianizes to give Z/4Z, so W is not an integer homology
sphere. In fact, W arises from +4-surgery on the figure eight knot.
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Proposition 2.56. The fundamental group of W cannot be left-ordered by applying the previous
theorem.

Proof. In order to apply the previous result, we must find α ∈ S(M1) such that π1(M1(α)) and
π1(M2(ϕ∗(α))) are left-orderable. However, one can check that for α ∈ ⟨y, x2⟩ the group

π1(M2)/⟨⟨α⟩⟩ = π1(M2(α))

is left-orderable if and only if α = y, in fact if α ̸= y then the resulting group always has torsion
(indeed, is a finite group if α /∈ ⟨y⟩.)

Therefore, if we are to the previous theorem toW , we must take ϕ(α) = y to be our left-orderable
slope on ∂M2. Correspondingly, we must have α = ϕ−1(y) = σ2 = µ. However, µ = σ2 is not a
left-orderable slope since B3/⟨⟨σ2⟩⟩ is trivial. □

This shows we actually need the full generality of the theorem, and so we must deal with normal
families and the full structure of LO(G).

Example 2.57. Continuing with the last example: Recall from last class that we defined the
Dehornoy ordering of B3 to have positive cone

PD = {σk2}k>0 ∪ P1,

where P1 was the 1-positive elements of B3. From the basic properties of PD, we can argue that

P±±
D = {σ±k2 }k>0 ∪ P±

1

actually defines a positive cone in B3 for all choices of ±. So we get four positive cones, with
PD = P++

D being the original. Set

N1 = normal closure of {P++
D , P+−

D , P−+
D , P−−

D } ⊂ LO(π1(M1)),

and set N2 = LO(π1(M2)), which one can check has only four elements. They are precisely the
orderings that arise lexicographically from the short exact sequence

1 → ⟨y⟩ → ⟨x, y | xyx−1 = y−1⟩ → Z → 0.

There is a little bit of work to do here if we want to apply Bludov-Glass, where we need to check
that

r(gP±±
D g−1) = r(P±±

D ),

where r : LO(π1(M1)) → LO(∂M1) is the restriction map. Once we check this, it is easy to see
(e.g. by slogging through the definitions) that the two normal families are compatible with the
identification induced by the gluing map. □

We had to fuss a bit in the example above to make the necessary normal families. However
in some situations, sometimes the obvious necessary condition turns out to be enough. What we
mean here by “obvious necessary condition” is the following: If G ∗ϕi H is LO and so contains a
positive cone P , then clearly P ∩ G = PG and P ∩ H = PH are two positive cones that satisfy
ϕ−1
1 (PG) = ϕ−1

2 (PH). So the existence of “compatible cones” PG and PH , in the sense that they
agree on the amalgamated subgroups, is always necessary. In fact, it is sometimes sufficient.

Theorem 2.58. Suppose that G,H,A are as above, that ϕ1(A) is central in G and ϕ2(A) is central
in H. Then G∗ϕiH is LO if and only if there exist PG ⊂ G and PH ⊂ H with ϕ−1

1 (PG) = ϕ−1
2 (PH).

Proof. The “only if” part holds in general. On the other hand, suppose that there exist PG, PH as
in the statement of the theorem.

Set
N1 = {P ∈ LO(G) | ϕ−1

1 (P ) = ϕ−1
1 (PG)}

and set
N2 = {P ∈ LO(H) | ϕ−1

2 (P ) = ϕ−1
2 (PH)}.
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To see that these families are normal, note that if P ∈ LO(G) then

gPg−1 ∩ ϕ1(A) = gPg−1 ∩ gϕ1(A)g−1 = g(P ∩ ϕ1(A))g−1 = P ∩ ϕ1(A)
since ϕ1(A) is central in G. Therefore if P ∈ N1 then gPg−1 ∩ ϕ1(A) = P ∩ ϕ1(A) and therefore
ϕ−1
1 (gPg−1) = ϕ−1

1 (P ) = ϕ−1
1 (PG). Similarly for N2.

Moreover, by these same observations, every P ∈ N1 satisfies ϕ−1
1 (P ) = ϕ−1

2 (PH), and every

Q ∈ N2 satisfies ϕ−1
1 (PG) = ϕ−1

2 (Q). So these families satisfy the hypothesis of Theorem 2.50, and
thus G ∗ϕi H is LO. □

We can generalize the “if” direction of the last theorem to prove things like:

Theorem 2.59. Suppose that G,H,A are as above. If there exist PG ⊂ G and PH ⊂ H that are
positive cones of bi-orderings with ϕ−1

1 (PG) = ϕ−1
2 (PH), then G ∗ϕi H is LO.

There is also another extremely significant class of examples that are expected to behave this same
way, in the sense that it’s good enough to match left-orderings of the factors on the amalgamating
subgroups, and the normal families somehow “happen for free”.

Conjecture 2.60. [4] Suppose that for i = 1, 2, the 3-manifoldMi is compact, connected, orientable
and irreducible, with boundary ∂Mi = Ti an incompressible torus. Fix a homeomorphism ϕ : T1 →
T2 and set M = M1 ∪ϕ M2, whose fundamental group is π1(M) = π1(M1) ∗ϕi π1(M2) for some
choice of injective homomorphisms ϕi : Z ⊕ Z → π1(Mi) determined by the gluing map ϕ (i.e. we
want ϕ(ϕ1(a, b)) = ϕ2(a, b) for all (a, b) ∈ Z⊕ Z).

Then π1(M) is LO if and only if there exist positive cones P1 ∈ π1(M1) and P2 ∈ π1(M2) such
that ϕ−1

1 (P1) = ϕ−1
2 (P2).

In fact, we conjecture something a bit different. First, observe that with M,M1,M2 and ϕ as
above, the map ϕ induces an bijection ϕ∗ : S(M1) → S(M2) from the slopes on the boundary ofM1

to slopes on the boundary ofM2. Recall also that there is a slope map s : LO(π1(M)) → S(M) ∼= S1

which associates to each positive cone the equivalence class of a line [L(P )].

Conjecture 2.61. [4] With M,M1,M2 and ϕ as above, we use si : LO(π1(Mi)) → S(M) to denote
the slope map of the ordering. Then the fundamental group π1(M) is left-orderable if and only if
ϕ∗ ◦ s1(LO(π1(M1))) ∩ s2(LO(π1(M2))) ̸= ∅.

In plain english: The fundamental group π1(M) is left-orderable if and only if we can find
orderings on π1(M1) and π1(M2) that determine the same slope. This can be generalized to multiple
3-manifold pieces, but it’s simplest if we stick with two for the statement of our conjecture.
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[18] Warren Dicks and Zoran Šunić. Orders on trees and free products of left-ordered groups. Canad. Math. Bull.,

63(2):335–347, 2020.
[19] D. B. A. Epstein. Periodic flows on three-manifolds. Ann. of Math. (2), 95:66–82, 1972.
[20] Sergio R. Fenley and Rafael Potrie. Minimality of the action on the universal circle of uniform foliations. Groups

Geom. Dyn., 15(4):1489–1521, 2021.
[21] Edward Formanek. Extending partial right orders on nilpotent groups. J. London Math. Soc. (2), 7:131–134,

1973.
[22] L. Fuchs. Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley

Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963.
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